Endothelial nitric oxide synthase activity is essential for vasodilation during blood flow recovery but not for arteriogenesis.

نویسندگان

  • Barend Mees
  • Shawn Wagner
  • Elena Ninci
  • Silvia Tribulova
  • Sandra Martin
  • Rien van Haperen
  • Sawa Kostin
  • Matthias Heil
  • Rini de Crom
  • Wolfgang Schaper
چکیده

OBJECTIVE Arteriogenesis is the major mechanism of vascular growth, which is able to compensate for blood flow deficiency after arterial occlusion. Endothelial nitric oxide synthase (eNOS) activity is essential for neovascularization, however its specific role in arteriogenesis remains unclear. We studied the role of eNOS in arteriogenesis using 3 mouse strains with different eNOS expression. METHODS AND RESULTS Distal femoral artery ligation was performed in eNOS-overexpressing mice (eNOStg), eNOS-deficient (eNOS-/-) mice, and wild type (WT) controls. Tissue perfusion and collateral-dependent blood flow were significantly increased in eNOStg mice compared with WT only immediately after ligation. In eNOS-/- mice, although tissue perfusion remained significantly decreased, collateral-dependent blood flow was only decreased until day 7, suggesting normal, perhaps delayed collateral growth. Histology confirmed no differences in collateral arteries of eNOStg, eNOS-/-, and WT mice at 1 and 3 weeks. Administration of an NO donor induced vasodilation in collateral arteries of eNOS-/- mice, but not in WT, identifying the inability to vasodilate collateral arteries as main cause of impaired blood flow recovery in eNOS-/- mice. CONCLUSIONS This study demonstrates that eNOS activity is crucial for NO-mediated vasodilation of peripheral collateral vessels after arterial occlusion but not for collateral artery growth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endothelial Nitric Oxide Synthase Activity Is Essential for Vasodilation During Blood

Barend Mees, Shawn Wagner, Elena Ninci, Silvia Tribulova, Sandra Martin, Rien van Haperen, Flow Recovery but not for Arteriogenesis Endothelial Nitric Oxide Synthase Activity Is Essential for Vasodilation During Blood Print ISSN: 1079-5642. Online ISSN: 1524-4636 Copyright © 2007 American Heart Association, Inc. All rights reserved. Greenville Avenue, Dallas, TX 75231 is published by the Americ...

متن کامل

Endothelial nitric oxide synthase is critical for ischemic remodeling, mural cell recruitment, and blood flow reserve.

The genetic loss of endothelial-derived nitric oxide synthase (eNOS) in mice impairs vascular endothelial growth factor (VEGF) and ischemia-initiated blood flow recovery resulting in critical limb ischemia. This result may occur through impaired arteriogenesis, angiogenesis, or mobilization of stem and progenitor cells. Here, we show that after ischemic challenge, eNOS knockout mice [eNOS (-/-)...

متن کامل

Vitamin C improves endothelium-dependent vasodilation by restoring nitric oxide activity in essential hypertension.

BACKGROUND Essential hypertension is associated with impaired endothelium-dependent vasodilation. Inactivation of endothelium-derived nitric oxide by oxygen free radicals participates in endothelial dysfunction in experimental hypertension. To test this hypothesis in humans, we evaluated the effect of antioxidant vitamin C on endothelium-dependent responses in essential hypertensive patients. ...

متن کامل

VEGF receptor antagonism blocks arteriogenesis, but only partially inhibits angiogenesis, in skeletal muscle of exercise-trained rats.

Both collateral vessel enlargement (arteriogenesis) and capillary growth (angiogenesis) in skeletal muscle occur in response to exercise training. Vascular endothelial growth factor (VEGF) is implicated in both processes. Thus we examined the effect of a VEGF receptor (VEGF-R) inhibitor (ZD4190, AstraZeneca) on collateral-dependent blood flow in vivo and collateral artery size ex vivo (indicato...

متن کامل

Inhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats

Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 27 9  شماره 

صفحات  -

تاریخ انتشار 2007